
• PVFs can be thought of as capturing large-scale 
temporal properties of the environment. 

• Encodes the structure of the MDP at different 
spatial scales. 

• PVFs can’t be easily scaled to large state-spaces.
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PVFs & The Successor Representation (SR)
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Training with auxiliary tasks produces representations  
that span the principle components of  (PVFs).
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A Practical Implementation with the 
Successor Measure
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• When learning with many auxiliary tasks increasing 
capacity is crucial (specifically width).

• Generalize equality indicator to set-based indicator 
as motivated by the Successor Measure.

Random Network Indicator

• PVN learns a representation that’s amenable to 
linear control with strong perf. in just 15M frames.

Qualitatively PVN Encodes Temporal 
Structure
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